Longest Palindromic Substring
Question
Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.
Example
Given the string ="abcdzdcab"
, return"cdzdc"
.
Challenge
O(n2) time is acceptable. Can you do it in O(n) time.
Tags
String
Related Problems
Easy Valid Palindrome 22 % Medium Longest Palindromic Substring 26 % Medium Palindrome Partitioning II 22 %
Analysis
区间类动态规划
Time O(n^2), Space O(n^2)
用dp[i][j]
来存DP的状态,需要较多的额外空间: Space O(n^2)
DP的4个要素
状态:
dp[i][j]
: s.charAt(i)到s.charAt(j)是否构成一个Palindrome
转移方程:
dp[i][j] = s.charAt(i) == s.charAt(j)
&
&
(j - i
<
= 2 || dp[i + 1][j - 1])
初始化:
dp[i][j] = true
whenj - i
<
= 2
结果:
- 找
maxLen = j - i + 1;
,并得到相应longest substring:longest = s.substring(i, j + 1);
- 找
中心扩展
这种方法基本思想是遍历数组,以其中的1个元素或者2个元素作为palindrome的中心,通过辅助函数,寻找能拓展得到的最长子字符串。外层循环 O(n),内层循环O(n),因此时间复杂度 Time O(n^2),相比动态规划二维数组存状态的方法,因为只需要存最长palindrome子字符串本身,这里空间更优化:Space O(1)
Manacher's Algorithm
这种算法可以达到O(n)时间,但是并不很通用,因此这里略过讨论。具体参考:
- wikipedia: Longest palindromic substring
- Manacher’s Algorithm – Linear Time Longest Palindromic Substring – Part 1
class Solution {
public:
/*
* @param s: input string
* @return: the longest palindromic substring
*/
string longestPalindrome(string &s) {
// write your code here
int len = s.length();
if (len < 2) {
return s;
}
vector<vector<bool>> dp(len, vector<bool>(len, false));
int start = 0;
int end = 0;
int maxLen =1;
for (int i = 0; i < len; i++) {
dp[i][i] = true;
}
for (int endIndex = 0; endIndex < len; endIndex++) {
for (int startIndex = 0; startIndex < endIndex; startIndex++) {
if (endIndex - startIndex == 1) {
dp[startIndex][endIndex] = (s[startIndex] == s[endIndex]);
} else {
dp[startIndex][endIndex] = (s[startIndex] == s[endIndex]) && dp[startIndex + 1][endIndex - 1];
}
if (dp[startIndex][endIndex]) {
int localLen = endIndex - startIndex + 1;
if (localLen > maxLen) {
maxLen = localLen;
start = startIndex;
end = endIndex;
}
}
}
}
return s.substr(start, end - start + 1);
}
};